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The use of quaternions as an aid to efficient computer simulation of molecular fluids is dis- 
cussed. It is shown that the rotational motion of rigid bodies (the molecules) can be described 
by second order differential equations which are soluble using the same numerical methods 
used for the translational equations. An alternative derivation of the kinematic equations is 
also given, together with an outline of the methods used in an extensive molecular dynamics 
simulation of water. Ii‘ 1985 Academic Press. Inc. i 

1. INTRODUCTION 

Euler angles have long been used as a convenient means for representing the 
orientation of a rigid body and as the generalized coordinates in the rotational 
equations of motion [ 1, 21. In systems more complex than those treated in elemen- 
tary textbooks, for which numerical solution of the equations is the only approach 
possible, it is known that the Euler angles do not permit the formulation of a 
numerically stable set of equations [3]. To circumvent this difficulty when carrying 
out molecular dynamics simulation of rigid-molecule fluids alternative schemes 
have been proposed; these include redefining the Euler angles whenever a 
singularity is approached [4], use of holonomic constraints to eliminate explicit 
mention of rotational motion [S], and replacement of the Euler angles by quater- 
nion components [3, 6-J. The last of these schemes provides a particularly simple 
and computationally efficient reformulation of the dynamical problem. 

Our principal purpose is to extend treatments of quaternions and show that the 
rotational dynamics can be expressed in terms of second-order differential 
equations, rather than the first-order equations used previously [3]. A consequence 
of this result is that both rotational and translational equations of motion can then 
be solved by means of the same numerical techniques. We also describe a very sim- 
ple derivation of the expressions for the rotation matrix and angular velocity; the 
derivation follows an existing treatment [2] but has been extended to produce the 
equations required by the molecular dynamics calculations. It is interesting to 
observe that despite their usefulness, quaternions have not received wide coverage 
in present-day mechanics texts (see [3] for some earlier references). 

The results described here have been used in extensive water and hydration 
simultations [7, S]. The systems contained 343 molecules and were followed for 

* Present address: IBM, Department 48B/428, Neighborhood Road, Kingston, N.Y. 12401. 

306 
0021-9991/85 $3.00 
Copyright 0 1985 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



MOLECULARDYNAMICSSIMULATION 307 

periods of time of up to an order of magnitude longer than in previous work 
[9, lo]. Two factors contributed to the feasibility of the effort: First, the improved 
numerical stability of the quaternion form of the equations of motion allowed a 
significant increase in the time step employed in the numerical solution. Second, the 
computations were carried out on a high-speed array processor, an especially cost- 
effective tool for this kind of problem. 

2. QUATERNION REPRESENTATION OF ROTATION 

The starting point of the derivation is a theorem of Euler [ I] - the most general 
displacement of a rigid body with one point fixed is a rotation about some axis. If c 
denotes the direction of the axis and CD the angle of rotation, then a vector r fixed to 
the body is transformed into [Z] 

r’=cos@r+(l-cos@)(c.r)c+sin@cxr. (1) 

The inverse of (1) is obtained by interchanging r and r’ and using the angle - @. In 
terms of the usual 3 x 3 rotation matrix Cl, 2) 

r = &r’; (2) 

here .B! corresponds to a -@ rotation, the transpose ~4’ to a +@ rotation. 
From (1) 

&=cos@9+(1-cos@)cc-sin@V, (3) 

where 9 is the unit matrix and 

with (c,> the components (or direction cosines) of c. 
The Euler homogeneous parameters are defined as [2] 

q, = cos @5/2 

= c, sin Q/2 

m = 0, 

m= 1 ... 3. 
(4) 

Only three of the four parameters are independent since the normalization con- 
dition 
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is automatically satisfied. An alternative form of d is obtained by combining (3) 
and (4), 

where 

(5) 

q = sin @/2 c, 

2 = sin @I2 %. 
(6) 

The full rotation matrix required in the numerical simulations follows immediately 
from (5), 

[ 

t-4:-4: q1qz+qoq3 4143-4042 

aI=2 41q2-9oq3 ;-4:-q: 4243+9041 1 . (7) 
q1q3+4oq2 q2q3-qoq1 4 - 4: - 4: 

This version of the rotation matrix is much more efficiently handled com- 
putationally than that based on Euler angles ([ 11, Eq. 4-46) as it is both free of 
trigonometric functions and involves fewer multiplications. 

The homogeneous parameters {qm} are readily expressed in terms of the Euler 
angles 4, 0, and I,$. From (5), 

cos @ = f(tr d - 1) 

=$-(cos8+ 1)c0s(~+lj)+c0s8-1], 

where we have used the Euler angle representation of d. Use of (4) yields qo. The 
remaining parameters, e.g., ql , are obtained from (7), 

41 = (43 - d2)/4q0 

and then substituting the components of the Euler angle form of d. The final 
expressions are 

q0 = cos(B/2) cos i(fj + II/) 

ql = sin(B/2) cos i(d - tj) 

q2 = sin(0/2) sin i(4 - $) 

q3 = cos(8/2) sin $(4 + II/). 

03) 

The same results obtained by a different route appear in [2]; with a minor sign 
change they are also equivalent to the definitions used in [3]. Suitable linear com- 
binations of the Euler homogeneous parameters produce the more familiar 
Cayley-Klein parameters [ 1, 21. 
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The subsequent derivations, both for the kinematics and dynamics, are most con- 
cisely described in terms of quaternions (due to Hamilton) [2]: A quatemion q is 
defined whose components are the Euler homogeneous parameters 

q=qo+9,e,; (9) 

summation over m = 1 .. 3 is implied by the repeated index. The quantities e, 
satisfy 

e2 = -1 m 
(10) 

emen= hnkek7 m#n, 

where &,,k( =O, + 1) is the Levi-Civita density [ 11. The quantities ie, are 
equivalent to the Pauli spin matrices [a]. 

When the product of two quaternions is computed using (9) and (10) it becomes 
clear that (9) can also be written as 

9 = 40 + % (11) 

on the understanding that whenever a vector is used in the definition of a quater- 
nion, each component of the vector is multiplied by the corresponding e,. The rule 
for multiplication can then be expresed as 

where 

4;;=404b-q.Q’? q” = qrJq’ + qbq + q x q’. 

The conjugate of q is 

4*=90-q 

(12) 

(13) 

and the normalization condition 

wl* = q*q = 4040 + 4m9m = 1 (14) 

applies. 
A rotation operator based on q is obtained as follows: From (6) and (11) 

q = cos Q/2 + sin Q/2 c. (15) 

Define quaternions with zero scalar components 

r=O+r 

581/60/2-IO 
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and similarly r’. The multiplication rule (12) and the inverse of (1) then lead to 

q*r’q = (cos Q/2 -sin Q/2 c) r’(cos Q/2 + sin Q/2 c) 

=cos@r’+(l-cos@)(c.r’)c-sin@cxr’ 

= r. 

Thus qrq* ( = r’) is completely equivalent to &rr ( = r’) - both represent the effect 
of rotating a vector in space. The inverse relation gives the changes in the com- 
ponents of the vector when the coordinate axes are rotated. 

3. EQUATIONS OF MOTION 

An expression for the angular velocity o in terms of quaternions is readily 
derived [2]. A vector fixed in the rotating body varies with time as 

r(t) = a( t)T r(O), 

where d(O) = 9. Equivalently, 

r(d = q(r) r(O) q(t)* (16) 

in terms of time-dependent quaternions. Differentiating with respect to t gives 

f(t) = 4(t) r(O) q(f)* + q(t) r(O) 4(f)* 

= g(t) r(t) - r(t) gW7 (17) 

where use has been made of (14) and (16), and 

g(t) = dl(t) q(t)*. (18) 

The scalar part of (17) is zero, hence [Z] 

i=gxr-rxg=oxr, 

where the time-dependence is now implicit, and 

0=2g. (19) 

As defined in (19), the components of w  are expressed in terms of space-fixed 
coordinate axes (which coincide with the body-fixed axes at t = 0). The equations of 
rigid-body dynamics adopt their simplest form when expressed using the body-fixed 
axes (see below). If o’(t) denotes o(t) expressed in terms of the instantaneous prin- 
cipal axes (at time t) and g’(t) the corresponding quaternion, then 

g’(t) = q(t)* s(t) q(t) 
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describes the relation between their components. Use of (18) gives 

g’ = q*qq*q = q*q, 

where the t-dependence is implicit. Hence, by (12), 

0’ = 2(qoil- 404 + il x 91, 

or in matrix form: 

b:i r -ql q. q3 -q2i r do 
4 =2 -q2 -q3 40 41 4 41 

-43 92 -41 40 42 

0 40 41 92 q3 43 

311 

(20) 

1. (21) 

The last of the four equations in (21) follows from d/dt(q*q) = 0 and is included to 
orthogonalize the matrix and hence make the inverse relation between (Qm) and o’ 
trivially obtainable. A result equivalent to (21) appears in [3]. Eq. (21) should be 
contrasted with the expression relating o’ to the Euler angles and their derivatives 
(Cl, Eqs. 4-1033); the matrix involved is singular at 8=0 and r~ and is a source of 
numerical instability when 8 approaches these values [3]. The orthogonality of the 
matrix in (21) eliminates this problem. 

The rotational dynamics of rigid bodies are based on the Euler equation 

and its cyclic permutations [ 11; here Z,,..., are the principal moments of inertia and 
N J >..., the components of the external torque acting on the body relative to the 
principal axes. The Euler equations can be expressed wholly in terms of the 
homogeneous parameters and their derivatives. The resulting differential equations 
are second order and do not involve o’, whereas the end results of the earlier 
analysis [3] were the first-order equations (21) and (22). As stated in the Introduc- 
tion the advantage of using second-order equations is that they can be solved by 
the same numerical techniques used for the translational equations of motion; 
under similar conditions (step size and order) the accuracy of the solution will 
equal that obtained using first-order equations. 

The derivative of (20) is 

premultiplication by q and rearranging leads to 

q = q(Q’- Q*q), 
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and since the scalar part of g’ is zero, 

(23) 

If the matrix appearing in (21) is denoted by W then (23) can be expressed as cil; 
=- ;w= 

“I / 1 03; . (24) 

- m; 

The components of ti’ in (24) can be replaced by the Euler equations (22), and the 
components of o’ appearing there by the expressions in (21). The resulting 
equations of motion are of the form 

ii,=fm({qnL bL>, N), rn=O.‘. 3. (25) 

A complete description of the motion requires the equations for the motion of the 
centre of mass as well, namely 

L=d{~,}, F), m= 1 . ..3. (26) 

where F is the total force acting on the body. 

4. APPLICATION 

The equations derived above have been used in a series of molecular dynamics 
simulations of liquid water and effects associated with hydration. The results of 
these simulations have been detailed elsewhere [7,8]; our purpose here is to out- 
line the key technical aspects of the calculations. The recipe is completely general in 
that it can be applied to any fluid of rigid molecules whose dynamics are described 
by the Euler equations (22) and whose interactions can be described in terms of for- 
ces between pairs of sites on different molecules. A well-known example of a fluid of 
this kind is the MCY-CI model [ 111 used in the water simulations. A description 
of the main features of the calculation follows. 

Initialization. The coordinates and velocities - both translational and rotational 
- are given suitable initial values; the molecules can for example be placed on the 
sites of an imaginary lattice, with randomly chosen orientations and velocities. 
Euler angles may be used to describe the initial orientation but they are then con- 
verted to the homogeneous parameters {qm) using (8) and not referenced further. 

Time step. The temporal evolution of the system is followed by numerically solv- 
ing the equations of motion (2526); the actual evolution occurs in a series of dis- 
crete time steps. A fifth-order predictor-corrector method [ 12, 131 is used to solve 
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the differential equations; predictor-corrector methods have the advantage over 
those of the Runge-Kutta type that the force calculations - the major part of the 
computation - need only be carried out once per time step. The method has a 
relatively minor disadvantage in that considerably more information concerning the 
system at previous time steps (either just the preceding step or several earlier steps 
depending on the particular method [ 123) must be retained; this is not an impor- 
tant factor in the present work. In order to advance the system over a single time 
step the following sequence of calculations is carried out: 

(1) Tentative estimates of molecular coordinates are obtained by combining 
information from earlier time steps using the appropriate predictor formulae [13]. 

(2) The coordinates of the interaction sites on each molecule in a space-fixed 
coordinate frame are computed using the rotation matrix (7) appropriate to the 
molecule. 

(3) The combined forces acting on each interaction site are determined using 
the specific model potential function. 

(4) The total force and torque on each molecule are determined; the torque 
components are converted to the principal axis coordinates of the molecule using 
the rotation matrix again. 

(5) The corrector formulae [ 131 are applied to (25, 26) to produce revised 
estimates for the coordinates and velocities. 

If periodic boundaries are used then their effects must be included when updating 
the translational coordinates and when determining the distances between interac- 
tion sites during the force calculations. Finally, since the numerical methods do not 
fully preserve the normalization condition for q, updates to the rotational coor- 
dinates should include resealing to maintain the normalization. 

Measurement. At regular intervals various measurements are carried out and the 
data recorded to allow subsequent calculation of thermodynamic properties, mean 
temperature, radial distribution functions, angular distribution functions, etc. 
Quantities based on angles, such as the dipole-dipole correlation, are easily com- 
puted from the { q,}-if the dipole moment lies along the molecular z-axis then the 
scalar product of two such moments is simply the scalar product of the bottom 
rows of the d-matrices for the two molecules. 

Temperature adjustment. An initial phase of each simulation run is set aside to 
allow the system to equilibrate at the desired temperature. This is achieved by 
repeatedly scaling the translational and angular velocities until the mean kinetic 
energy settles down at the appropriate value. Due to the error inherent in the 
numerical solution method and the use of a finite-range cutoff in the potential 
function there is a small but persistent drift away from the equilibrium temperature 
throughout the course of the simulation; the accepted means of suppressing this 
drift is to monitor the kinetic temperature and, whenever the temperature deviation 
exceeds a certain threshold (or, equivalently, at regular intervals), rescale the 
velocities to restore the correct temperature. One of the factors affecting the rate of 
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temperature drift is the step size; use of quaternions permits a considerably larger 
step size (e.g., by a factor of five) for a given drift rate [3, 71. 

Organization. Simulations of this kind often entail large quantities of computer 
time (measured in terms of even tens of hours). The total run is then normally 
divided into a number of separate computer tasks that are run in sequence (a 
scheme known as checkpointing). One design goal is to organize the calculation so 
that the data describing the current and recent states of the fluid, together with 
information concerning the status of the simulation and the results of partially com- 
pleted measurements, are easily stored at the conclusion of one task and retrieved 
at the beginning of the next. 
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